Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 886
Filtrar
1.
Nat Commun ; 15(1): 2856, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565851

RESUMO

Aging, chronic high-fat diet feeding, or housing at thermoneutrality induces brown adipose tissue (BAT) involution, a process characterized by reduction of BAT mass and function with increased lipid droplet size. Single nuclei RNA sequencing of aged mice identifies a specific brown adipocyte population of Ucp1-low cells that are pyroptotic and display a reduction in the longevity gene syntaxin 4 (Stx4a). Similar to aged brown adipocytes, Ucp1-STX4KO mice display loss of brown adipose tissue mass and thermogenic dysfunction concomitant with increased pyroptosis. Restoration of STX4 expression or suppression of pyroptosis activation protects against the decline in both mass and thermogenic activity in the aged and Ucp1-STX4KO mice. Mechanistically, STX4 deficiency reduces oxidative phosphorylation, glucose uptake, and glycolysis leading to reduced ATP levels, a known triggering signal for pyroptosis. Together, these data demonstrate an understanding of rapid brown adipocyte involution and that physiologic aging and thermogenic dysfunction result from pyroptotic signaling activation.


Assuntos
Tecido Adiposo Marrom , Piroptose , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Transdução de Sinais , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
2.
J Acupunct Meridian Stud ; 17(1): 1-11, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38409809

RESUMO

Background: : Brown adipose tissue (BAT) is a unique thermogenic tissue in mammals mediated by uncoupling protein 1 (UCP1). The energy generated by glucose and triglyceride metabolism is released and transmitted throughout the body as heat. Understanding the factors influencing BAT function is crucial to determine its metabolic significance and effects on overall health. Although studies have shown that electroacupuncture (EA) at specific acupoints (e.g., ST36) can stimulate BAT, its effects at other acupoints are not well understood. Further research is needed to investigate the potential effects of EA at these acupoints and their association with BAT activation. Objectives: : This study aimed to investigate the effects of EA at the GV20 and EX-HN3 acupoints. Specifically, the effects of EA on BAT thermogenesis were analyzed by infrared thermography, western blotting, and real-time polymerase chain reaction (PCR). Methods: : A total of 12 C57BL/6J mice were randomly divided into the EA and control groups. The EA group received EA at GV20 and EX-HN3 for 20 min once daily for 14 days. The control group underwent the same procedure but without EA. The core body temperature was monitored. Infrared thermal images of the back of each mouse in both groups were captured. BAT samples were collected after euthanasia to analyze UCP1 protein and UCP1 mRNA. Results: : The average skin temperature in the scapular region of the EA group was increased by 1.1℃ compared with that of the C group (p < 0.05). Additionally, the average temperature along the governor vessel in the EA group was increased by 1.6℃ (p = 0.045). EA significantly increased the expression of UCP1 protein (p = 0.001) and UCP1 mRNA (p = 0.002) in BAT, suggesting a potential link between EA and BAT thermogenesis. Conclusion: : EA induced BAT thermogenesis, suggesting GV20 and EX-HN3 as potential acupoints for BAT stimulation. The experimental results also highlighted unique meridian characteristics as demonstrated by elevated skin temperature along the governor vessel in mice.


Assuntos
Tecido Adiposo Marrom , Eletroacupuntura , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Camundongos Endogâmicos C57BL , Termogênese/fisiologia , RNA Mensageiro/metabolismo , Mamíferos/metabolismo
3.
J Biol Chem ; 300(3): 105760, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367663

RESUMO

In the cold, the absence of the mitochondrial uncoupling protein 1 (UCP1) results in hyper-recruitment of beige fat, but classical brown fat becomes atrophied. Here we examine possible mechanisms underlying this phenomenon. We confirm that in brown fat from UCP1-knockout (UCP1-KO) mice acclimated to the cold, the levels of mitochondrial respiratory chain proteins were diminished; however, in beige fat, the mitochondria seemed to be unaffected. The macrophages that accumulated massively not only in brown fat but also in beige fat of the UCP1-KO mice acclimated to cold did not express tyrosine hydroxylase, the norepinephrine transporter (NET) and monoamine oxidase-A (MAO-A). Consequently, they could not influence the tissues through the synthesis or degradation of norepinephrine. Unexpectedly, in the cold, both brown and beige adipocytes from UCP1-KO mice acquired an ability to express MAO-A. Adipose tissue norepinephrine was exclusively of sympathetic origin, and sympathetic innervation significantly increased in both tissues of UCP1-KO mice. Importantly, the magnitude of sympathetic innervation and the expression levels of genes induced by adrenergic stimulation were much higher in brown fat. Therefore, we conclude that no qualitative differences in innervation or macrophage character could explain the contrasting reactions of brown versus beige adipose tissues to UCP1-ablation. Instead, these contrasting responses may be explained by quantitative differences in sympathetic innervation: the beige adipose depot from the UCP1-KO mice responded to cold acclimation in a canonical manner and displayed enhanced recruitment, while the atrophy of brown fat lacking UCP1 may be seen as a consequence of supraphysiological adrenergic stimulation in this tissue.


Assuntos
Tecido Adiposo Bege , Tecido Adiposo Marrom , Sistema Nervoso Simpático , Termogênese , Proteína Desacopladora 1 , Animais , Camundongos , Tecido Adiposo Bege/inervação , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adrenérgicos/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Norepinefrina/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Camundongos Knockout , Aclimatação/genética , Sistema Nervoso Simpático/fisiologia , Macrófagos/metabolismo
4.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339044

RESUMO

Spexin (SPX) is a novel adipokine that plays an emerging role in metabolic diseases due to its involvement in carbohydrate homeostasis, weight loss, appetite control, and gastrointestinal movement, among others. In obese patients, SPX plasma levels are reduced. Little is known about the relationship between SPX and white adipose tissue (WAT) thermogenesis. Therefore, the aim of the present study was to evaluate the role of SPX in this process. C57BL/6J male mice were treated or not with SPX for ten days. On day 3, mice were randomly divided into two groups: one kept at room temperature and the other kept at cold temperature (4 °C). Caloric intake and body weight were recorded daily. At the end of the protocol, plasma, abdominal (epididymal), subcutaneous (inguinal), and brown AT (EAT, IAT, and BAT, respectively) depots were collected for measurements. We found that SPX treatment reduced Uncoupling protein 1 levels in WAT under both basal and cold conditions. SPX also reduced cox8b and pgc1α mRNA levels and mitochondrial DNA, principally in IAT. SPX did not modulate the number of beige precursors. SPX decreased spx levels in IAT depots and galr2 in WAT depots. No differences were observed in the BAT depots. In conclusion, we showed, for the first time, that SPX treatment in vivo reduced the thermogenic process in subcutaneous and abdominal AT, being more evident under cold stimulation.


Assuntos
Tecido Adiposo Marrom , Temperatura Baixa , Hormônios Peptídicos , Termogênese , Animais , Humanos , Masculino , Camundongos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/metabolismo , Camundongos Endogâmicos C57BL , Termogênese/efeitos dos fármacos , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo , Hormônios Peptídicos/farmacologia , Hormônios Peptídicos/fisiologia
5.
Cell Death Differ ; 31(4): 479-496, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332049

RESUMO

The appropriate transcriptional activity of PPARγ is indispensable for controlling inflammation, tumor and obesity. Therefore, the identification of key switch that couples PPARγ activation with degradation to sustain its activity homeostasis is extremely important. Unexpectedly, we here show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) critically controls PPARγ activity homeostasis via SIRT1 to enhance adipose plasticity via promoting white adipose tissues beiging and brown adipose tissues thermogenesis. Mechanistically, ACSS2 binds directly acetylated PPARγ in the presence of ligand and recruits SIRT1 and PRDM16 to activate UCP1 expression. In turn, SIRT1 triggers ACSS2 translocation from deacetylated PPARγ to P300 and thereafter induces PPARγ polyubiquitination and degradation. Interestingly, D-mannose rapidly activates ACSS2-PPARγ-UCP1 axis to resist high fat diet induced obesity in mice. We thus reveal a novel ACSS2 function in coupling PPARγ activation with degradation via SIRT1 and suggest D-mannose as a novel adipose plasticity regulator via ACSS2 to prevent obesity.


Assuntos
Homeostase , PPAR gama , Sirtuína 1 , Animais , PPAR gama/metabolismo , Camundongos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Camundongos Endogâmicos C57BL , Humanos , Obesidade/metabolismo , Obesidade/patologia , Fatores de Transcrição/metabolismo , Dieta Hiperlipídica , Masculino , Tecido Adiposo Marrom/metabolismo , Termogênese , Manose/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Tecido Adiposo Branco/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo/metabolismo
6.
Biochem Biophys Res Commun ; 703: 149689, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38382361

RESUMO

The escalating incidence of metabolic pathologies such as obesity and diabetes mellitus underscores the imperative for innovative therapeutics targeting lipid metabolism modulation. Within this context, augmenting thermogenic processes in adipose cells emerges as a viable therapeutic approach. Given the limitations of previous ß3-adrenergic receptor (ß3-AR) agonist treatments in human diseases, there is an increasing focus on therapies targeting the ß2-adrenergic receptor (ß2-AR). Olodaterol (OLO) is a potent ß2-AR agonist that is a potential novel pharmacological candidate in this area. Our study explores the role and underlying mechanisms of OLO in enhancing brown adipose thermogenesis, providing robust evidence from in vitro and in vivo studies. OLO demonstrated a dose-dependent enhancement of lipolysis, notably increasing the expression of Uncoupling Protein 1 (UCP1) and raising the rate of oxygen consumption in primary brown adipocytes. This suggests a significant increase in thermogenic potential and energy expenditure. The administration of OLO to murine models noticeably enhanced cold-induced nonshivering thermogenesis. OLO elevated UCP1 expression in the brown adipose tissue of mice. Furthermore, it promoted brown adipocyte thermogenesis by activating the ß2-AR/cAMP/PKA signaling cascades according to RNA sequencing, western blotting, and molecular docking analysis. This investigation underscores the therapeutic potential of OLO for metabolic ailments and sheds light on the intricate molecular dynamics of adipocyte thermogenesis, laying the groundwork for future targeted therapeutic interventions in human metabolic disorders.


Assuntos
Adipócitos Marrons , Benzoxazinas , Termogênese , Camundongos , Humanos , Animais , Adipócitos Marrons/metabolismo , Simulação de Acoplamento Molecular , Termogênese/genética , Tecido Adiposo Marrom/metabolismo , Transdução de Sinais , Obesidade/metabolismo , Agonistas Adrenérgicos beta , Receptores Adrenérgicos , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
7.
Sci Rep ; 14(1): 4932, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418847

RESUMO

One potential approach for treating obesity is to increase energy expenditure in brown and white adipose tissue. Here we aimed to achieve this outcome by targeting mitochondrial uncoupler compounds selectively to adipose tissue, thus avoiding side effects from uncoupling in other tissues. Selective drug accumulation in adipose tissue has been observed with many lipophilic compounds and dyes. Hence, we explored the feasibility of conjugating uncoupler compounds with a lipophilic C8-hydrocarbon chain via an ether bond. We found that substituting the trifluoromethoxy group in the uncoupler FCCP with a C8-hydrocarbon chain resulted in potent uncoupling activity. Nonetheless, the compound did not elicit therapeutic effects in mice, likely as a consequence of metabolic instability resulting from rapid ether bond cleavage. A lipophilic analog of the uncoupler compound 2,6-dinitrophenol, in which a C8-hydrocarbon chain was conjugated via an ether bond in the para-position (2,6-dinitro-4-(octyloxy)phenol), exhibited increased uncoupling activity compared to the parent compound. However, in vivo pharmacokinetics studies suggested that 2,6-dinitro-4-(octyloxy)phenol was also metabolically unstable. In conclusion, conjugation of a hydrophobic hydrocarbon chain to uncoupler compounds resulted in sustained or improved uncoupling activity. However, an ether bond linkage led to metabolic instability, indicating the need to conjugate lipophilic groups via other chemical bonds.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Metabolismo Energético , Tecido Adiposo Branco/metabolismo , Éteres , Fenóis/farmacologia , Proteína Desacopladora 1/metabolismo
8.
Plant Physiol Biochem ; 207: 108324, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183903

RESUMO

Three genes encoding mitochondrial uncoupling proteins (UCPs) have been described in Arabidopsis thaliana (UCP1 to UCP3). In plants, UCPs may act as an uncoupler or as an aspartate/glutamate exchanger. For instance, much of the data regarding UCP functionality were obtained for the UCP1 and UCP2 isoforms compared with UCP3. Here, to get a better understanding about the concerted action of UCP1 and UCP3 in planta, we investigated the transcriptome and metabolome profiles of ucp1 ucp3 double mutant plants during the vegetative phase. For that, 21-day-old mutant plants, which displayed the most evident phenotypic alterations compared to wild type (WT) plants, were employed. The double knockdown of UCP1 and UCP3, isoforms unequivocally present inside the mitochondria, promoted important transcriptional reprogramming with alterations in the expression of genes related to mitochondrial and chloroplast function as well as those responsive to abiotic stress, suggesting disturbances throughout the cell. The observed transcriptional changes were well integrated with the metabolomic data of ucp1 ucp3 plants. Alterations in metabolites related to primary and secondary metabolism, particularly enriched in the Alanine, Aspartate and Glutamate metabolism, were detected. These findings extend our knowledge of the underlying roles played by UCP3 in concert with UCP1 at the whole plant level.


Assuntos
Arabidopsis , Tecido Adiposo Marrom/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácido Aspártico , Glutamatos/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Isoformas de Proteínas/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 3/metabolismo
9.
Cell Metab ; 36(3): 526-540.e7, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38272036

RESUMO

That uncoupling protein 1 (UCP1) is the sole mediator of adipocyte thermogenesis is a conventional viewpoint that has primarily been inferred from the attenuation of the thermogenic output of mice genetically lacking Ucp1 from birth (germline Ucp1-/-). However, germline Ucp1-/- mice harbor secondary changes within brown adipose tissue. To mitigate these potentially confounding ancillary changes, we constructed mice with inducible adipocyte-selective Ucp1 disruption. We find that, although germline Ucp1-/- mice succumb to cold-induced hypothermia with complete penetrance, most mice with the inducible deletion of Ucp1 maintain homeothermy in the cold. However, inducible adipocyte-selective co-deletion of Ucp1 and creatine kinase b (Ckb, an effector of UCP1-independent thermogenesis) exacerbates cold intolerance. Following UCP1 deletion or UCP1/CKB co-deletion from mature adipocytes, moderate cold exposure triggers the regeneration of mature brown adipocytes that coordinately restore UCP1 and CKB expression. Our findings suggest that thermogenic adipocytes utilize non-paralogous protein redundancy-through UCP1 and CKB-to promote cold-induced energy dissipation.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Creatina Quinase Forma BB/metabolismo
10.
Sci Rep ; 14(1): 1563, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238383

RESUMO

In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially by increasing FGF21 expression. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis under physiological stress by generating mice selectively lacking either Atf4 (ATF4 BKO) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum-fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue. Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum-fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis under fed conditions likely in a FGF21-independent manner, in part via increased amino acid uptake and metabolism.


Assuntos
Fator 4 Ativador da Transcrição , Fatores de Crescimento de Fibroblastos , Termogênese , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Aminoácidos/metabolismo , Temperatura Baixa , Camundongos Endogâmicos C57BL , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
Biofactors ; 50(1): 101-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37482913

RESUMO

Brown adipose tissue (BAT) converts chemical energy into heat to maintain body temperature. Although fatty acids (FAs) represent a primary substrate for uncoupling protein 1 (UCP1)-dependent thermogenesis, BAT also utilizes glucose for the same purpose. Considering that estrous cycle effects on BAT are not greatly explored, we examined those of 6-h fasting on interscapular BAT (iBAT) thermogenic markers in proestrus and diestrus. We found that the percentage of multilocular adipocytes was lower in proestrus than in diestrus, although it was increased after fasting in both analyzed estrous cycle stages. Furthermore, the percentage of paucilocular adipocytes was increased by fasting, unlike the percentage of unilocular cells, which decreased in both analyzed stages of the estrous cycle. The UCP1 amount was lower in proestrus irrespectively of the examined dietary regimens. Regarding FA transporters, it was shown that iBAT CD36 content was increased in fasted rats in diestrus. In contrast to GLUT1, the level of GLUT4 was interactively modulated by selected estrous cycle phases and fasting. There was no change in insulin receptor and ERK1/2 activation, while AKT activation was interactively modulated by fasting and estrous cycle stages. Our study showed that iBAT exhibits morphological and functional changes in proestrus and diestrus. Moreover, iBAT undergoes additional dynamic functional and morphological changes during short-term fasting to modulate nutrient utilization and adjust energy expenditure.


Assuntos
Tecido Adiposo Marrom , Termogênese , Feminino , Ratos , Animais , Dieta , Jejum , Ciclo Estral , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
12.
Nutrition ; 117: 112253, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944411

RESUMO

OBJECTIVE: The aim of this study was to investigate the role of peroxisome proliferator-activated receptor (PPAR) activation (single PPARα or PPARγ, and dual PPARα/γ) on UCP1-dependent and -independent thermogenic pathways and mitochondrial metabolism in the subcutaneous white adipose tissue of mice fed a high-fat diet. METHODS: Male C57BL/6 mice received either a control diet (10% lipids) or a high-fat diet (HF; 50% lipids) for 12 wk. The HF group was divided to receive the treatments for 4 wk: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS: The HF group was overweight, insulin resistant, and had subcutaneous white adipocyte dysfunction. Treatment with PPARα and PPARα/γ reduced body mass, mitigated insulin resistance, and induced browning with increased UCP1-dependent and -independent thermogenesis activation and improved mitochondrial metabolism to support the beige adipocyte phenotype. CONCLUSION: PPARα and dual PPARα/γ activation recruited UCP1+ beige adipocytes and favored UCP1-independent thermogenesis, yielding body mass and insulin sensitivity normalization. Preserved mitochondrial metabolism emerges as a potential target for obesity treatment using PPAR agonists, with possible clinical applications.


Assuntos
Adipócitos Bege , Resistência à Insulina , Animais , Masculino , Camundongos , Adipócitos Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , PPAR alfa/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo
13.
Biochem Pharmacol ; 220: 116014, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158020

RESUMO

The ability of alternative splicing mechanisms to control gene expression is increasingly being recognized as relevant for adipose tissue function. The expression of SF3B1, a key component of the SF3B complex directly involved in spliceosome formation, was previously reported to be significantly induced in brown adipose tissue under cold-induced thermogenic activation. Here, we identify that noradrenergic cAMP-mediated thermogenic stimulation increases SF3B1 expression in brown and beige adipocytes. We further show that pladienolide-B, a drug that binds SF3B1 to inhibit pre-mRNA splicing by targeting the SF3B complex, down-regulates key components of the thermogenic machinery (e.g., UCP1 gene expression), differentially alters the expression of alternative splicing-regulated transcripts encoding molecular actors involved in the oxidative metabolism of brown adipocytes (e.g., peroxisome proliferator-activated receptor-gamma co-activator-alpha [PGC-1α] and cytochrome oxidase subunit 7a genes), and impairs the respiratory activity of brown adipocytes. Similar alterations were found in brown adipocytes with siRNA-mediated knockdown of SF3B1 protein levels. Our findings collectively indicate that SF3B1 is a key factor in the appropriate thermogenic activation of differentiated brown adipocytes. This work exemplifies the importance of splicing processes in adaptive thermogenesis and suggests that pharmacological tools, such as pladienolide-B, may be used to modulate brown adipocyte thermogenic activity.


Assuntos
Adipócitos Marrons , Regulação da Expressão Gênica , Adipócitos Marrons/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Transcrição/metabolismo , Tecido Adiposo Marrom/metabolismo , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
14.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069028

RESUMO

Stimulation of thermogenesis by inducing uncoupling protein 1 (UCP1) expression in adipocytes is thought to promote weight loss by increasing energy expenditure, and it is postulated that the human newborn has thermogenic subcutaneous fat depots. However, it remains unclear whether a relevant number of UCP1-expressing (UCP1+) adipocytes exist in the early postnatal life. Here we studied the distribution of UCP1 and the expression of thermogenic genes in the subcutaneous adipose tissues of the human fetus, infant and child. We show that the deep layer of human fetal and neonatal subcutaneous fat, particularly the abdominal wall, is rich in UCP1+ adipocytes. These adipocytes develop in the late third trimester and persist throughout childhood, expressing a panel of genes linked to mitochondrial biogenesis and thermogenesis. During the early childhood adiposity rebound-a critical phase that determines obesity risk later in life-the absence of adipose tissue UCP1 expression in children with normal body mass index (BMI) correlates with an obesity-associated gene expression signature. Finally, UCP1 expression is negatively correlated with BMI z-score and adipocyte size in infants and children. Overall, our results show that the absence of UCP1 expression in adipose tissue is an early indicator of adipose tissue expansion in children.


Assuntos
Obesidade Pediátrica , Criança , Pré-Escolar , Humanos , Recém-Nascido , Tecido Adiposo/metabolismo , Obesidade Pediátrica/genética , Obesidade Pediátrica/metabolismo , Gordura Subcutânea/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
15.
J Nutr Sci Vitaminol (Tokyo) ; 69(5): 377-381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37940578

RESUMO

Ferulic acid (FA) is the most abundant phenolic acid in wheat grains. Recent studies have reported that FA intake significantly suppresses body weight gain and accumulation of fat deposits in mice. However, the mechanism by which FA intake affects body fat accumulation remains unclear. We hypothesized that dietary FA induces the formation of beige adipocytes and contributes to the suppression of body fat accumulation. In this study, we investigated whether dietary FA significantly induces beige adipocyte formation and thermogenesis in mice. We found that intake of dietary FA (control diet supplemented with 10 g of FA/kg diet) for 4 wk significantly decreased white adipose tissue (WAT) deposits and body weight gain and significantly induced beige adipocyte formation in inguinal WAT (iWAT) in mice. Furthermore, dietary FA specifically induced thermogenesis in iWAT, dependent upon the significant induction of uncoupling protein 1 expression. These findings suggest that the dietary FA-mediated reduction of WAT accumulation and body weight gain is associated with the induction of beige adipocyte formation and thermogenesis in iWAT, which increases energy expenditure. Our study presents a novel example of dietary FA intake-mediated bioactivity as a functional food-derived factor.


Assuntos
Adipócitos Bege , Animais , Camundongos , Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Termogênese , Peso Corporal , Tecido Adiposo Marrom/metabolismo , Camundongos Endogâmicos C57BL , Proteína Desacopladora 1/metabolismo
16.
Endocrinology ; 164(12)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37944134

RESUMO

Functional human brown and white adipose tissue (BAT and WAT) are vital for thermoregulation and nutritional homeostasis, while obesity and other stressors lead, respectively, to cold intolerance and metabolic disease. Understanding BAT and WAT physiology and dysfunction necessitates clinical trials complemented by mechanistic experiments at the cellular level. These require standardized in vitro models, currently lacking, that establish references for gene expression and function. We generated and characterized a pair of immortalized, clonal human brown (hBA) and white (hWA) preadipocytes derived from the perirenal and subcutaneous depots, respectively, of a 40-year-old male individual. Cells were immortalized with hTERT and confirmed to be of a mesenchymal, nonhematopoietic lineage based on fluorescence-activated cell sorting and DNA barcoding. Functional assessments showed that the hWA and hBA phenocopied primary adipocytes in terms of adrenergic signaling, lipolysis, and thermogenesis. Compared to hWA, hBA were metabolically distinct, with higher rates of glucose uptake and lactate metabolism, and greater basal, maximal, and nonmitochondrial respiration, providing a mechanistic explanation for the association between obesity and BAT dysfunction. The hBA also responded to the stress of maximal respiration by using both endogenous and exogenous fatty acids. In contrast to certain mouse models, hBA adrenergic thermogenesis was mediated by several mechanisms, not principally via uncoupling protein 1 (UCP1). Transcriptomics via RNA-seq were consistent with the functional studies and established a molecular signature for each cell type before and after differentiation. These standardized cells are anticipated to become a common resource for future physiological, pharmacological, and genetic studies of human adipocytes.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Masculino , Camundongos , Animais , Humanos , Adulto , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Termogênese/genética , Adrenérgicos/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
17.
Chin J Nat Med ; 21(11): 812-829, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38035937

RESUMO

Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic ß cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Morus , Camundongos , Animais , Tecido Adiposo Marrom , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Morus/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Estudos Prospectivos , Transdução de Sinais , Tecido Adiposo Branco , Folhas de Planta , Proteína Desacopladora 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
18.
J Phys Chem B ; 127(45): 9685-9696, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37921649

RESUMO

The uncoupling protein 1 (UCP1) dissipates the transmembrane (TM) proton gradient in the inner mitochondrial membrane (IMM) by leaking protons across the membrane and producing heat in the process. Such a nonshivering production of heat in the brown adipose tissue can combat obesity-related diseases. UCP1-associated proton leak is activated by free fatty acids and inhibited by purine nucleotides. The mechanism of proton leak and the binding sites of the activators (fatty acids) remain unknown, while the binding site of the inhibitors (nucleotides) was described recently. Using molecular dynamics simulations, we generated a conformational ensemble of UCP1. Using metadynamics-based free energy calculations, we obtained the most likely ATP-bound conformation of UCP1. Our conformational ensemble provides a molecular basis for a breadth of prior biochemical data available for UCP1. Based on the simulations, we make the following testable predictions about the mechanisms of activation of proton leak and proton leak inhibition by ATP: (1) R277 plays the dual role of stabilizing ATP at the binding site for inhibition and acting as a proton surrogate for D28 in the absence of a proton during proton transport, (2) the binding of ATP to UCP1 is mediated by residues R84, R92, R183, and S88, (3) R92 shuttles ATP from the E191-R92 gate in the intermembrane space to the nucleotide binding site and serves to increase ATP affinity, (4) ATP can inhibit proton leak by controlling the ionization states of matrix facing lysine residues such as K269 and K56, and (5) fatty acids can bind to UCP1 from the IMM either via the cavity between TM1 and TM2 or between TM5 and TM6. Our simulations set the platform for future investigations into the proton transport and inhibition mechanisms of UCP1.


Assuntos
Canais Iônicos , Prótons , Canais Iônicos/química , Proteína Desacopladora 1/metabolismo , Proteínas Mitocondriais/química , Ácidos Graxos/metabolismo , Nucleotídeos/metabolismo , Trifosfato de Adenosina
19.
Nat Commun ; 14(1): 7610, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993438

RESUMO

Metabolic reprogramming in malignant cells is a hallmark of cancer that relies on augmented glycolytic metabolism to support their growth, invasion, and metastasis. However, the impact of global adipose metabolism on tumor growth and the drug development by targeting adipose metabolism remain largely unexplored. Here we show that a therapeutic paradigm of drugs is effective for treating various cancer types by browning adipose tissues. Mirabegron, a clinically available drug for overactive bladders, displays potent anticancer effects in various animal cancer models, including untreatable cancers such as pancreatic ductal adenocarcinoma and hepatocellular carcinoma, via the browning of adipose tissues. Genetic deletion of the uncoupling protein 1, a key thermogenic protein in adipose tissues, ablates the anticancer effect. Similarly, the removal of brown adipose tissue, which is responsible for non-shivering thermogenesis, attenuates the anticancer activity of mirabegron. These findings demonstrate that mirabegron represents a paradigm of anticancer drugs with a distinct mechanism for the effective treatment of multiple cancers.


Assuntos
Tecido Adiposo Branco , Neoplasias , Animais , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Acetanilidas/farmacologia , Acetanilidas/metabolismo , Metabolismo Energético , Termogênese , Neoplasias/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
20.
J. physiol. biochem ; 79(4): 731-743, nov. 2023.
Artigo em Inglês | IBECS | ID: ibc-227548

RESUMO

Hepatocellular carcinoma (HCC) markedly enhances liver secretion of fibroblast growth factor 21 (FGF-21), a hepatokine that increases brown and subcutaneous inguinal white adipose tissues (BAT and iWAT, respectively) uncoupling protein 1 (UCP-1) content, thermogenesis and energy expenditure. Herein, we tested the hypothesis that an enhanced BAT and iWAT UCP-1-mediated thermogenesis induced by high levels of FGF-21 is involved in HCC-associated catabolic state and fat mass reduction. For this, we evaluated body weight and composition, liver mass and morphology, serum and tissue levels of FGF-21, BAT and iWAT UCP-1 content, and thermogenic capacity in mice with Pten deletion in hepatocytes that display a well-defined progression from steatosis to steatohepatitis (NASH) and HCC upon aging. Hepatocyte Pten deficiency promoted a progressive increase in liver lipid deposition, mass, and inflammation, culminating with NASH at 24 weeks and hepatomegaly and HCC at 48 weeks of age. NASH and HCC were associated with elevated liver and serum FGF-21 content and iWAT UCP-1 expression (browning), but reduced serum insulin, leptin, and adiponectin levels and BAT UCP-1 content and expression of sympathetically regulated gene glycerol kinase (GyK), lipoprotein lipase (LPL), and fatty acid transporter protein 1 (FATP-1), which altogether resulted in an impaired whole-body thermogenic capacity in response to CL-316,243. In conclusion, FGF-21 pro-thermogenic actions in BAT are context-dependent, not occurring in NASH and HCC, and UCP-1-mediated thermogenesis is not a major energy-expending process involved in the catabolic state associated with HCC induced by Pten deletion in hepatocytes. (AU)


Assuntos
Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Hepatócitos , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...